Assembly mechanism of early Hsp90-Cdc37-kinase complexes

Author:

Keramisanou Dimitra1ORCID,Vasantha Kumar M.V.1,Boose Nicole1ORCID,Abzalimov Rinat R.2ORCID,Gelis Ioannis1ORCID

Affiliation:

1. Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.

2. Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA.

Abstract

Molecular chaperones have an essential role for the maintenance of a balanced protein homeostasis. Here, we investigate how protein kinases are recruited and loaded to the Hsp90-Cdc37 complex, the first step during Hsp90-mediated chaperoning that leads to enhanced client kinase stability and activation. We show that conformational dynamics of all partners is a critical feature of the underlying loading mechanism. The kinome co-chaperone Cdc37 exists primarily in a dynamic extended conformation but samples a low-populated, well-defined compact structure. Exchange between these two states is maintained in an assembled Hsp90-Cdc37 complex and is necessary for substrate loading. Breathing motions at the N-lobe of a free kinase domain partially expose the kinase segment trapped in the Hsp90 dimer downstream in the cycle. Thus, client dynamics poise for chaperone dependence. Hsp90 is not directly involved during loading, and Cdc37 is assigned the task of sensing clients by stabilizing the preexisting partially unfolded client state.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3