Spatially distributed computation in cortical circuits

Author:

Gepshtein Sergei12ORCID,Pawar Ambarish S.1ORCID,Kwon Sunwoo3ORCID,Savel’ev Sergey4,Albright Thomas D.1

Affiliation:

1. Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA.

2. Center for Spatial Perception and Concrete Experience, University of Southern California, Los Angeles, CA, USA.

3. Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, CA, USA.

4. Department of Physics, Loughborough University, Loughborough, UK.

Abstract

The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron’s response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3