Volcanic forcing degrades multiyear-to-decadal prediction skill in the tropical Pacific

Author:

Wu Xian1ORCID,Yeager Stephen G.1ORCID,Deser Clara1ORCID,Rosenbloom Nan1ORCID,Meehl Gerald A.1ORCID

Affiliation:

1. Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA.

Abstract

Volcanic aerosol forcing can affect global climate, but its role in climate prediction remains poorly understood. We isolate the impact of volcanic eruptions on multiyear-to-decadal climate prediction skill by comparing two suites of initialized decadal hindcasts conducted with and without historical volcanic forcing. Unexpectedly, the inclusion of volcanic forcing in the prediction system significantly degrades the forecast skill of detrended multiyear-to-decadal sea surface temperature (SST) variability in the central-eastern tropical Pacific. The ensemble mean hindcasts produce multiyear-to-decadal tropical Pacific SST cooling in response to large tropical volcanic eruptions through thermodynamic and El Niño–Southern Oscillation (ENSO)–like dynamic processes. However, in observations, these eruptions coincided with tropical Pacific warming, which is well predicted by the no-volcano hindcasts and, hence, is likely related to internal climate variability. Improved model representation of volcanic response and its interaction with internal climate variability is required to advance prediction of tropical Pacific decadal variability and associated global impacts.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3