Brain-like functional specialization emerges spontaneously in deep neural networks

Author:

Dobs Katharina123ORCID,Martinez Julio124ORCID,Kell Alexander J. E.5,Kanwisher Nancy12ORCID

Affiliation:

1. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

2. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

3. Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.

4. Department of Psychology, Stanford University, Stanford, CA, USA.

5. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.

Abstract

The human brain contains multiple regions with distinct, often highly specialized functions, from recognizing faces to understanding language to thinking about what others are thinking. However, it remains unclear why the cortex exhibits this high degree of functional specialization in the first place. Here, we consider the case of face perception using artificial neural networks to test the hypothesis that functional segregation of face recognition in the brain reflects a computational optimization for the broader problem of visual recognition of faces and other visual categories. We find that networks trained on object recognition perform poorly on face recognition and vice versa and that networks optimized for both tasks spontaneously segregate themselves into separate systems for faces and objects. We then show functional segregation to varying degrees for other visual categories, revealing a widespread tendency for optimization (without built-in task-specific inductive biases) to lead to functional specialization in machines and, we conjecture, also brains.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3