Microwave-assisted, performance-advantaged electrification of propane dehydrogenation

Author:

Kwak Yeonsu12ORCID,Wang Cong2ORCID,Kavale Chaitanya A.3ORCID,Yu Kewei12ORCID,Selvam Esun12ORCID,Mallada Reyes4ORCID,Santamaria Jesus4ORCID,Julian Ignacio5ORCID,Catala-Civera Jose M.6ORCID,Goyal Himanshu3ORCID,Zheng Weiqing2ORCID,Vlachos Dionisios G.12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.

2. RAPID Manufacturing Institute, Catalysis Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, DE 19716, USA.

3. Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India.

4. Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC-Universidad de Zaragoza), Zaragoza 50018, Spain.

5. CIRCE Foundation, Zaragoza 50018, Spain.

6. ITACA Institute, Universitat Politècnica de València, Valencia 46022, Spain.

Abstract

Nonoxidative propane dehydrogenation (PDH) produces on-site propylene for value-added chemicals. While commercial, its modest selectivity and catalyst deactivation hamper the process efficiency and limit operation to lower temperatures. We demonstrate PDH in a microwave (MW)–heated reactor over PtSn/SiO 2 catalyst pellets loaded in a SiC monolith acting as MW susceptor and a heat distributor while ensuring comparable conditions with conventional reactors. Time-on-stream experiments show active and stable operation at 500°C without hydrogen addition. Upon increasing temperature or feed partial pressure at high space velocity, catalysts under MWs show resistance in coking and sintering, high activity, and selectivity, starkly contrasting conventional reactors whose catalyst undergoes deactivation. Mechanistic differences in coke formation are exposed. Gas-solid temperature gradients are computationally investigated, and nanoscale temperature inhomogeneities are proposed to rationalize the different performances of the heating modes. The approach highlights the great potential of electrification of endothermic catalytic reactions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference76 articles.

1. Electrified methane reforming: A compact approach to greener industrial hydrogen production

2. F. Ausfelder A. Bazzanella H. VanBrackle R. Wilde C. Beckmann R. Mills E. Rightor C. Tam N. Trudeau C. Botschek Technology roadmap energy and GHG reductions in the chemical industry via catalytic processes (International Energy Agency 2013).

3. Electrification and Decarbonization of the Chemical Industry

4. Modular reactors with electrical resistance heating for hydrocarbon cracking and other endothermic reactions

5. In situ formation of ZnOx species for efficient propane dehydrogenation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3