B1-B2 transition in shock-compressed MgO

Author:

Wicks June K.1ORCID,Singh Saransh2ORCID,Millot Marius2ORCID,Fratanduono Dayne E.2ORCID,Coppari Federica2ORCID,Gorman Martin G.2ORCID,Ye Zixuan3,Rygg J. Ryan45ORCID,Hari Anirudh367ORCID,Eggert Jon H.2ORCID,Duffy Thomas S.8ORCID,Smith Raymond F.2ORCID

Affiliation:

1. Dept. of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.

2. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

3. Dept. of Earth & Planetary Sciences Div. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

4. Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.

5. Dept. of Mechanical Engineering and Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14623, USA.

6. Dept. of Materials Science and Engineering and PULSE Institute, Stanford University, Stanford, CA 94305, USA.

7. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

8. Dept. of Geosciences, Princeton University, Princeton, NJ 08544, USA.

Abstract

Magnesium oxide (MgO) is a major component of the Earth’s mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaCl B 1 crystal structure to a CsCl B 2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature. We identify the B 1 to B 2 phase transition between 397 and 425 gigapascal (around 9700 kelvin), in agreement with recent theory that accounts for phonon anharmonicity. From 425 to 493 gigapascal, we observe a mixed-phase region of B1 and B2 coexistence. The transformation follows the Watanabe-Tokonami-Morimoto mechanism. Our data are consistent with B 2-liquid coexistence above 500 gigapascal and complete melting at 634 gigapascal. This study bridges the gap between previous theoretical and experimental studies, providing insights into the timescale of this phase transition.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3