Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons

Author:

Wu Xulei1ORCID,Dang Bingjie2,Zhang Teng2ORCID,Wu Xiulong1ORCID,Yang Yuchao2345ORCID

Affiliation:

1. School of Integrated Circuits, Anhui University, Hefei 230601, China.

2. Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China.

3. School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.

4. Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing 102206, China.

5. Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China.

Abstract

Neuromorphic speech recognition systems that use spiking neural networks (SNNs) and memristors are progressing in hardware development. The conventional manual preprocessing of audio signals is shifting toward event-based recognition with convolutional SNNs. Despite achieving high accuracy in classification, the efficient extraction of spatiotemporal features from audio events continues to be a substantial challenge. In this study, we introduce dynamic time-surface neurons (DTSNs) using volatile memristors featuring an adjustable temporal kernel decay, enabled by series-connected transistors with an Au/LiCoO 2 /Au configuration. DTSNs act as feature descriptors, enhancing the spatiotemporal feature extraction from event audio data. A two-layer SNN classifier, fully connected and incorporating a 1T1R nonvolatile memristor array, is trained to recognize the spatiotemporal features of the audio data. Our findings show classification accuracies of up to 95.91%, substantial improvements in computational efficiency, and increased noise resilience, confirming the promise of our memristor-based speech recognition system for practical applications.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3