Brain injury environment critically influences the connectivity of transplanted neurons

Author:

Grade Sofia12ORCID,Thomas Judith123ORCID,Zarb Yvette12ORCID,Thorwirth Manja12ORCID,Conzelmann Karl-Klaus4ORCID,Hauck Stefanie M.5ORCID,Götz Magdalena126ORCID

Affiliation:

1. Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany.

2. Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany.

3. Graduate School of Systemic Neuroscience, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany.

4. Max von Pettenkofer Institute Virology, Medical Faculty and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany.

5. Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Center for Environmental Health, 85764 Neuherberg, Germany.

6. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany.

Abstract

Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3