Tuning MOF/polymer interfacial pore geometry in mixed matrix membrane for upgrading CO 2 separation performance

Author:

Ozcan Aydin12ORCID,Fan Dong13ORCID,Datta Shuvo Jit45ORCID,Diaz-Marquez Alejandro1ORCID,Semino Rocio16ORCID,Cheng Youdong45ORCID,Joarder Biplab45ORCID,Eddaoudi Mohamed45ORCID,Maurin Guillaume1ORCID

Affiliation:

1. ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.

2. Materials Technologies, TÜBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye.

3. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, P.R. China.

4. Division of Physical Science and Engineering (PSE), Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

5. Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD3), KAUST, Thuwal 23955-6900, Saudi Arabia.

6. CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, F-75005 Paris, France.

Abstract

The current paradigm considers the control of the MOF/polymer interface mostly for achieving a good compatibility between the two components to ensure the fabrication of continuous mixed-matrix metal-organic framework (MMMOF) membranes. Here, we unravel that the interfacial pore shape nanostructure plays a key role for an optimum molecular transport. The prototypical ultrasmall pore AlFFIVE-1-Ni MOF was assembled with the polymer PIM-1 to design a composite with gradually expanding pore from the MOF entrance to the MOF/polymer interfacial region. Concentration gradient–driven molecular dynamics simulations demonstrated that this pore nanostructuring enables an optimum guided path for the gas molecules at the MOF/polymer interface that decisively leads to an acceleration of the molecular transport all along the MMMOF membrane. This numerical prediction resulted in the successful fabrication of a [001]-oriented nanosheets AlFFIVE-1-Ni/PIM-1 MMMOF membrane exhibiting an excellent CO 2 permeability, better than many MMMs, and ideally associated with a sufficiently high CO 2 /CH 4 selectivity that makes this membrane very promising for natural gas/biogas purification.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3