High-throughput identification of spin-photon interfaces in silicon

Author:

Xiong Yihuang1ORCID,Bourgois Céline12,Sheremetyeva Natalya1ORCID,Chen Wei2ORCID,Dahliah Diana23,Song Hanbin45ORCID,Zheng Jiongzhi1ORCID,Griffin Sinéad M.56ORCID,Sipahigil Alp578ORCID,Hautier Geoffroy1ORCID

Affiliation:

1. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

2. Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve B-1348, Belgium.

3. Department of Physics, Ah-Najah National University, Nablus, Palestine.

4. Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

5. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

8. Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.

Abstract

Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: T i i + , F e i 0 , and R u i 0 . These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3