Discovery of enhanced lattice dynamics in a single-layered hybrid perovskite

Author:

Zhang Zhuquan1ORCID,Zhang Jiahao2ORCID,Liu Zi-Jie1,Dahod Nabeel S.3,Paritmongkol Watcharaphol13ORCID,Brown Niamh13,Stollmann Alexia3ORCID,Lee Woo Seok34ORCID,Chien Yu-Che1,Dai Zhenbang2,Nelson Keith A.1ORCID,Tisdale William A.3ORCID,Rappe Andrew M.2ORCID,Baldini Edoardo5ORCID

Affiliation:

1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.

3. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

4. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA.

Abstract

Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3