Synthetic genetic circuits to uncover the OCT4 trajectories of successful reprogramming of human fibroblasts

Author:

Ilia Katherine123ORCID,Shakiba Nika134ORCID,Bingham Trevor56ORCID,Jones Ross D.134ORCID,Kaminski Michael M.13789ORCID,Aravera Eliezer1310,Bruno Simone11ORCID,Palacios Sebastian1231112,Weiss Ron1312ORCID,Collins James J.1231314ORCID,Del Vecchio Domitilla311ORCID,Schlaeger Thorsten M.5ORCID

Affiliation:

1. Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

2. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA.

3. Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

4. School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada.

5. Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA.

6. Harvard University, Boston, MA 02115, USA.

7. Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz-Association, Berlin 10115, Germany.

8. Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Medizinische Klinik m.S. Nephrologie und Intensivmedizin, Berlin 10117, Germany.

9. Berlin Institute of Health, Berlin 13125, Germany.

10. Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA.

11. Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA.

12. Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.

13. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.

14. Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.

Abstract

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3