Verwey transition as evolution from electronic nematicity to trimerons via electron-phonon coupling

Author:

Wang Wei1ORCID,Li Jun1ORCID,Liang Zhixiu1ORCID,Wu Lijun1ORCID,Lozano Pedro M.12ORCID,Komarek Alexander C.3ORCID,Shen Xiaozhe4ORCID,Reid Alex H.4ORCID,Wang Xijie4ORCID,Li Qiang12ORCID,Yin Weiguo1ORCID,Sun Kai5ORCID,Robinson Ian K.16ORCID,Zhu Yimei1ORCID,Dean Mark P.M.1ORCID,Tao Jing1ORCID

Affiliation:

1. Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA.

2. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA.

3. Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187 Dresden, Germany.

4. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

5. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.

6. London Centre for Nanotechnology, University College, London WC1E 6BT, UK.

Abstract

Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step toward controlling material’s properties. Since the proposal of charge order–induced MIT in magnetite Fe 3 O 4 in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive. Recently, a trimeron order was found in the low-temperature structure of Fe 3 O 4 ; however, the expected transition entropy change in forming trimeron is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here, we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature structure of bulk Fe 3 O 4 and that, upon cooling, a competitive intertwining of charge and lattice orders arouses the Verwey transition. Our findings discover an unconventional type of electronic nematicity in correlated materials and offer innovative insights into the transition mechanism in Fe 3 O 4 via the electron-phonon coupling.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3