Phonon engineering of atomic-scale defects in superconducting quantum circuits

Author:

Chen Mo123ORCID,Owens John Clai123,Putterman Harald4ORCID,Schäfer Max123ORCID,Painter Oskar1234ORCID

Affiliation:

1. Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.

2. Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA.

3. Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA.

4. AWS Center for Quantum Computing, Pasadena, CA 91125, USA.

Abstract

Noise within solid-state systems at low temperatures can typically be traced back to material defects. In amorphous materials, these defects are broadly described by the tunneling two-level systems (TLSs) model. TLS have recently taken on further relevance in quantum computing because they dominate the coherence limit of superconducting quantum circuits. Efforts to mitigate TLS impacts have thus far focused on circuit design, material selection, and surface treatments. Our work takes an approach that directly modifies TLS properties. This is achieved by creating an acoustic bandgap that suppresses all microwave-frequency phonons around the operating frequency of a transmon qubit. For embedded TLS strongly coupled to the transmon qubit, we measure a pronounced increase in relaxation time by two orders of magnitude, with the longest T 1 time exceeding 5 milliseconds. Our work opens avenues for studying the physics of highly coherent TLS and methods for mitigating noise within solid-state quantum devices.

Publisher

American Association for the Advancement of Science (AAAS)

Reference95 articles.

1. Tunneling states in amorphous solids

2. Anomalous low-temperature thermal properties of glasses and spin glasses;Anderson P. W.;Philos. Mag. A J. Theor. Exp. Appl. Phys.,1972

3. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits

4. J. Gao The physics of superconducting microwave resonators thesis California Institute of Technology Pasadena CA (2008).

5. 1/fnoise: Implications for solid-state quantum information

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3