Water deficit and storm disturbances co-regulate Amazon rainforest seasonality

Author:

Lian Xu1ORCID,Morfopoulos Catherine2ORCID,Gentine Pierre134ORCID

Affiliation:

1. Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.

2. Department of Life Sciences, Imperial College London, Silwood Park, London, UK.

3. Center for Learning the Earth with Artificial intelligence and Physics (LEAP), Columbia University, New York, NY, USA.

4. Climate School, Columbia University, New York, NY, USA.

Abstract

Canopy leaf abundance of Amazon rainforests increases in the dry season but decreases in the wet season, contrary to earlier expectations of water stress adversely affecting plant functions. Drivers of this seasonality, particularly the role of water availability, remain debated. We introduce satellite-based ecophysiological indicators to demonstrate that Amazon rainforests are constrained by water during dry seasons despite light-driven canopy greening. Evidence includes a shifted partitioning of photosynthetically active radiation toward more isoprene emissions and synchronized declines in leaf and xylem water potentials. In addition, we find that convective storms attenuate light-driven ecosystem greening in the late dry season and then reverse to net leaf loss in the wet season, improving rainforest leaf area predictability by 24 to 31%. These findings highlight the susceptibility of Amazon rainforests to increasing risks of drought and windthrow disturbances under warming.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3