Affiliation:
1. Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China.
Abstract
Mechanical activation of fibroblasts, caused by friction and transforming growth factor–β1 recognition, is one of the main causes of tissue adhesions. In this study, we developed a lubricated gene-hydrogel patch, which provides both a motion lubrication microenvironment and gene therapy. The patch’s outer layer is composed of polyethylene glycol polyester hydrogel. The hydrogel forms hydrogen bonds with water molecules to create the motion lubrication layer, and it also serves as a gene delivery library for long-term gene silencing. Under the motion lubricated microenvironment, extracellular signal–regulated kinase–small interfering RNA can silence fibroblasts and enhance the blocking effect against fibroblast activation. In vitro, the proposed patch effectively inhibits fibroblast activation and reduces the coefficient of friction. In vivo, this patch reduces the expression of vimentin and α–smooth muscle actin in fibroblasts. Therefore, the lubricated gene-hydrogel patch can inhibit the mechanical activation of fibroblasts to promote tendon healing.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献