Growth of self-integrated atomic quantum wires and junctions of a Mott semiconductor

Author:

Asaba Tomoya1ORCID,Peng Lang1ORCID,Ono Takahiro1,Akutagawa Satoru1ORCID,Tanaka Ibuki1,Murayama Hinako12,Suetsugu Shota1ORCID,Razpopov Aleksandar3ORCID,Kasahara Yuichi1,Terashima Takahito1,Kohsaka Yuhki1ORCID,Shibauchi Takasada4ORCID,Ichikawa Masatoshi1ORCID,Valentí Roser3ORCID,Sasa Shin-ichi1ORCID,Matsuda Yuji1ORCID

Affiliation:

1. Department of Physics, Kyoto University, Kyoto 606-8502, Japan.

2. RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.

3. Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main, Germany.

4. Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.

Abstract

Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3