Electric field–dependent phonon spectrum and heat conduction in ferroelectrics

Author:

Wooten Brandi L.1ORCID,Iguchi Ryo2ORCID,Tang Ping3ORCID,Kang Joon Sang4ORCID,Uchida Ken-ichi25ORCID,Bauer Gerrit E. W.35678ORCID,Heremans Joseph P.149ORCID

Affiliation:

1. Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.

2. National Institute for Materials Science, Tsukuba 305-0047, Japan.

3. Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

4. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.

5. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

6. Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan.

7. Zernike Institute for Advanced Materials, Groningen University, 9747 AG Groningen, Netherlands.

8. Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences, Beijing 10090, China.

9. Department of Physics, The Ohio State University, Columbus, OH 43210, USA.

Abstract

This article shows experimentally that an external electric field affects the velocity of the longitudinal acoustic phonons ( v LA ), thermal conductivity (κ), and diffusivity ( D ) in a bulk lead zirconium titanate–based ferroelectric. Phonon conduction dominates κ, and the observations are due to changes in the phonon dispersion, not in the phonon scattering. This gives insight into the nature of the thermal fluctuations in ferroelectrics, namely, phonons labeled ferrons that carry heat and polarization. It also opens the way for phonon-based electrically driven all-solid-state heat switches, an enabling technology for solid-state heat engines. A quantitative theoretical model combining piezoelectric strain and phonon anharmonicity explains the field dependence of v LA , κ, and D without any adjustable parameters, thus connecting thermodynamic equilibrium properties with transport properties. The effect is four times larger than previously reported effects, which were ascribed to field-dependent scattering of phonons.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3