Quantum control of exciton wave functions in 2D semiconductors

Author:

Hu Jenny12ORCID,Lorchat Etienne3,Chen Xueqi12ORCID,Watanabe Kenji4ORCID,Taniguchi Takashi5ORCID,Heinz Tony F.12ORCID,Murthy Puneet A.6ORCID,Chervy Thibault3ORCID

Affiliation:

1. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

2. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

3. NTT Research, Inc. Physics & Informatics Laboratories, 940 Stewart Dr, Sunnyvale, CA 94085, USA.

4. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

5. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

6. Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland.

Abstract

Excitons—bound electron-hole pairs—play a central role in light-matter interaction phenomena and are crucial for wide-ranging applications from light harvesting and generation to quantum information processing. A long-standing challenge in solid-state optics has been to achieve precise and scalable control over excitonic motion. We present a technique using nanostructured gate electrodes to create tailored potential landscapes for excitons in 2D semiconductors, enabling in situ wave function shaping at the nanoscale. Our approach forms electrostatic traps for excitons in various geometries, such as quantum dots, rings, and arrays thereof. We show independent spectral tuning of spatially separated quantum dots, achieving degeneracy despite material disorder. Owing to the strong light-matter coupling of excitons in 2D semiconductors, we observe unambiguous signatures of confined exciton wave functions in optical reflection and photoluminescence measurements. This work unlocks possibilities for engineering exciton dynamics and interactions at the nanometer scale, with implications for optoelectronic devices, topological photonics, and quantum nonlinear optics.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3