Probing electron-hole Coulomb correlations in the exciton landscape of a twisted semiconductor heterostructure

Author:

Bange Jan Philipp1ORCID,Schmitt David1,Bennecke Wiebke1ORCID,Meneghini Giuseppe2ORCID,AlMutairi AbdulAziz3ORCID,Watanabe Kenji4ORCID,Taniguchi Takashi5ORCID,Steil Daniel1ORCID,Steil Sabine1,Weitz R. Thomas16ORCID,Jansen G. S. Matthijs1ORCID,Hofmann Stephan3ORCID,Brem Samuel2ORCID,Malic Ermin27,Reutzel Marcel1ORCID,Mathias Stefan16ORCID

Affiliation:

1. I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

2. Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany.

3. Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.

4. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

5. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

6. International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany.

7. Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.

Abstract

In two-dimensional semiconductors, cooperative and correlated interactions determine the material’s excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton’s hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3