Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition

Author:

Meng Lu12ORCID,Yang Fengmin1ORCID,Pang Yan3ORCID,Cao Zhenping1,Wu Feng1,Yan Deyue12ORCID,Liu Jinyao1ORCID

Affiliation:

1. Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.

2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

3. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.

Abstract

Bacteriophages (phages) are widely explored as antimicrobials for treating infectious diseases due to their specificity and potency to infect and inhibit host bacteria. However, the application of phages to inhibit intracellular pathogens has been greatly restricted by inadequacy in cell entry and endosomal escape. Here, we describe the use of cationic polymers to selectively cap negatively charged phage head rather than positively charged tail by electrostatic interaction, resulting in charge-reversed phages with uninfluenced vitality. Given the positive surface charge and proton sponge effect of the nanocapping, capped phages are able to enter intestinal epithelial cells and subsequently escape from endosomes to lyse harbored pathogens. In a murine model of intestinal infection, oral ingestion of capped phages significantly reduces the translocation of pathogens to major organs, showing a remarkable inhibition efficacy. Our work proposes that simple synthetic nanocapping can manipulate phage bioactivity, offering a facile platform for preparing next-generation antimicrobials.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3