Efficient solid-state infrared-to-visible photon upconversion on atomically thin monolayer semiconductors

Author:

Duan Jiaru12ORCID,Liu Yanping12ORCID,Zhang Yongqing3ORCID,Chen Zeng1,Xu Xuehui4ORCID,Ye Lei1,Wang Zukun1,Yang Yang4ORCID,Zhang Delong3ORCID,Zhu Haiming12ORCID

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.

2. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China.

3. Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China.

4. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Abstract

Upconverting infrared light into visible light via the triplet-triplet annihilation process in solid state is important for various applications including photovoltaics, photodetection, and bioimaging. Although inorganic semiconductors with broad absorption and negligible exchange energy loss have emerged as promising alternative to molecular sensitizers, currently, they have exclusively suffered from low efficiency and contained toxic elements in near-infrared (NIR)–to–visible upconversion. Here, we report an ultrathin bilayer film for NIR-to-visible upconversion based on atomically thin two-dimensional (2D) monolayer semiconductors. The atomic flatness and strong light absorption of 2D monolayer semiconductors enable ultrafast energy transfer and robust NIR-to-visible emission with a high upconversion quantum yield (1.1 ± 0.2%) at modest incident power (260 mW cm −2 ). Increasing layer thickness adversely quenches the upconversion emission, highlighting the 2D advantage. Considering the whole library of 2D semiconductors, the facile large-scale production and the ultrathin solid-state architecture open a new research field for solid-state upconversion applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3