Quantifying the regime of thermodynamic control for solid-state reactions during ternary metal oxide synthesis

Author:

Szymanski Nathan J.12ORCID,Byeon Young-Woon2ORCID,Sun Yingzhi12ORCID,Zeng Yan2ORCID,Bai Jianming3ORCID,Kunz Martin4ORCID,Kim Dong-Min5ORCID,Helms Brett A.5ORCID,Bartel Christopher J.6ORCID,Kim Haegyeom2ORCID,Ceder Gerbrand12ORCID

Affiliation:

1. Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA.

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA.

4. The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

5. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.

Abstract

The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli–electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3