Main group catalysis for H 2 purification based on liquid organic hydrogen carriers

Author:

Hashimoto Taiki1ORCID,Asada Takahiro1,Ogoshi Sensuke1,Hoshimoto Yoichi1ORCID

Affiliation:

1. Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Abstract

Molecular hydrogen (H 2 ) is one of the most important energy carriers. In the midterm future, a huge amount of H 2 will be produced from a variety of hydrocarbon sources through conversion and removal of contaminants such as CO and CO 2 . However, bypassing these purification processes is desirable, given their energy consumption and environmental impact, which ultimately increases the cost of H 2 . Here, we demonstrate a strategy to separate H 2 from a gaseous mixture of H 2 /CO/CO 2 /CH 4 that can include an excess of CO and CO 2 relative to H 2 and simultaneously store it in N-heterocyclic compounds that act as liquid organic hydrogen carriers (LOHCs), which can be applied to produce H 2 by subsequent dehydrogenation. Our results demonstrate that LOHCs can potentially be used for H 2 purification from CO- and CO 2 -rich crude H 2 in addition to their well-established use in H 2 storage.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3