Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy

Author:

Zhang Chen1ORCID,Wang Han2ORCID,Yang Xinhui1,Fu Zi2,Ji Xiuru2,Shi Yifan3,Zhong Jie1,Hu Weiguo4ORCID,Ye Youqiong5ORCID,Wang Zhengting1ORCID,Ni Dalong2ORCID

Affiliation:

1. Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China.

2. Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.

3. Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.

4. Department of Surgery, Medical Center on Aging of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.

5. Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China.

Abstract

Inflammatory bowel disease (IBD) affects millions of people each year. The overproduction of reactive oxygen species (ROS) plays a critical role in the progress of IBD and will be a potential therapeutic target. Here, we synthesize a kind of oral zero-valent-molybdenum nanodots (ZVMNs) for the treatment of IBD by scavenging ROS. These ultrasmall ZVMNs can successfully pass through the gastric acid and then be absorbed by the intestine. It has been verified that ZVMNs can down-regulate the quantity of ROS and reduce colitis in a mouse IBD model without distinct side effects. In addition, RNA sequencing reveals a further mechanism that the ZVMNs can protect colon tissues from oxidative stress by inhibiting the nuclear factor κB signaling pathway and reducing the production of excessive pro-inflammatory factors. Together, the ZVMNs will offer a promising alternative treatment option for patients suffering from IBD.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3