Dendritic patterns from shear-enhanced anisotropy in nematic liquid crystals

Author:

Zhang Qing1ORCID,Zhou Shuang2ORCID,Zhang Rui3ORCID,Bischofberger Irmgard1ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003, USA.

3. Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.

Abstract

Controlling the growth morphology of fluid instabilities is challenging because of their self-amplified and nonlinear growth. The viscous fingering instability, which arises when a less viscous fluid displaces a more viscous one, transitions from exhibiting dense-branching growth characterized by repeated tip splitting of the growing fingers to dendritic growth characterized by stable tips in the presence of anisotropy. We controllably induce such a morphology transition by shear-enhancing the anisotropy of nematic liquid crystal solutions. For fast enough flow induced by the finger growth, the intrinsic tumbling behavior of lyotropic chromonic liquid crystals can be suppressed, which results in a flow alignment of the material. This microscopic change in the director field occurs as the viscous torque from the shear flow becomes dominant over the elastic torque from the nematic potential and macroscopically enhances the liquid crystal anisotropy to induce the transition to dendritic growth.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3