Predicting success in Cu-catalyzed C–N coupling reactions using data science

Author:

Samha Mohammad H.1ORCID,Karas Lucas J.1ORCID,Vogt David B.1,Odogwu Emmanuel C.1ORCID,Elward Jennifer2ORCID,Crawford Jennifer M.3ORCID,Steves Janelle E.3ORCID,Sigman Matthew S.1ORCID

Affiliation:

1. Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112, USA.

2. Molecular Design, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA 19426, USA.

3. Drug Substance Development, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA 19426, USA.

Abstract

Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C–N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3