Real-time Fourier-domain optical vector oscilloscope

Author:

Li Lun12ORCID,Zhang Chi12ORCID,Cai Yuchong12,Zhang Hongguang3,Li Yaoshuai12,Li Xiang4,Xiao Xi356ORCID,Wong Kenneth Kin-Yip78ORCID,Zhang Xinliang12ORCID

Affiliation:

1. Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

2. Optics Valley Laboratory, Wuhan 430074, China.

3. National Information Optoelectronics Innovation Center, Wuhan 430074, China.

4. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China.

5. State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China.

6. Peng Cheng Laboratory, Shenzhen 518055, China.

7. Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

8. Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.

Abstract

To meet the constant demands of high-capacity telecommunications infrastructure, data rates beyond 1 terabit per second per wavelength channel and optical multiplexing are widely applied. However, these features pose challenges for existing data acquisition and optical performance monitoring techniques because of bandwidth limitation and signal synchronization. We designed an approach that would address these limitations by optically converting the frequency limit to an unlimited time axis and combining this with a chirped coherent detection to innovatively obtain the full-field spectrum. With this approach, we demonstrated a real-time Fourier-domain optical vector oscilloscope, with a 3.4-terahertz bandwidth and a 280-femtosecond temporal resolution over a 520-picosecond record length. In addition to on-off keying and binary phase-shift keying signals (128 gigabits per second), quadrature phase-shift keying wavelength division–multiplexed signals (4 × 160 gigabits per second) are simultaneously observed. Moreover, we successfully demonstrate some high-precision measurements, which indicate them as a promising scientific and industrial tool in high-speed optical communication and ultrafast optical measurement.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3