Threefold reduction of modeled uncertainty in direct radiative effects over biomass burning regions by constraining absorbing aerosols

Author:

Zhong Qirui1ORCID,Schutgens Nick1ORCID,van der Werf Guido R.1ORCID,Takemura Toshihiko2ORCID,van Noije Twan3ORCID,Mielonen Tero4ORCID,Checa-Garcia Ramiro56ORCID,Lohmann Ulrike7ORCID,Kirkevåg Alf8,Olivié Dirk J. L.8,Kokkola Harri4ORCID,Matsui Hitoshi9ORCID,Kipling Zak6ORCID,Ginoux Paul10ORCID,Le Sager Philippe3ORCID,Rémy Samuel11ORCID,Bian Huisheng1213ORCID,Chin Mian13ORCID,Zhang Kai14ORCID,Bauer Susanne E.1516,Tsigaridis Kostas1516ORCID

Affiliation:

1. Department of Earth Sciences, Vrije Universiteit, Amsterdam, Netherlands.

2. Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan.

3. Royal Netherlands Meteorological Institute, De Bilt, Netherlands.

4. Finnish Meteorological Institute, Kuopio, Finland.

5. Laboratoire des Sciences du Climat et de l'Environnement, IPSL, Gif-sur-Yvette, France.

6. European Centre for Medium-Range Weather Forecasts, Reading, UK.

7. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.

8. Norwegian Meteorological Institute, Oslo, Norway.

9. Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.

10. NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA.

11. HYGEOS, Lille, France.

12. Goddard Earth Sciences Technology and Research (GESTAR) II, University of Maryland at Baltimore County, Baltimore, MD, USA.

13. NASA Goddard Space Flight Center, Greenbelt, MD, USA.

14. Pacific Northwest National Laboratory, Richland, WA, USA.

15. NASA Goddard Institute for Space Studies, New York City, NY, USA.

16. Center for Climate Systems Research, Columbia University, New York City, NY, USA.

Abstract

Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncertainty in the most uncertain radiative forcing agent.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3