Superconducting disordered neural networks for neuromorphic processing with fluxons

Author:

Goteti Uday S.12ORCID,Cai Han2ORCID,LeFebvre Jay C.3ORCID,Cybart Shane A.2ORCID,Dynes Robert C.1ORCID

Affiliation:

1. Department of Physics, University of California, San Diego, CA 92093, USA.

2. Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA.

3. Department of Physics, University of California, Riverside, CA 92521, USA.

Abstract

In superconductors, magnetic fields are quantized into discrete fluxons (flux quanta Φ0), made of microscopic circulating supercurrents. We introduce a multiterminal synapse network comprising a disordered array of superconducting loops with Josephson junctions. The loops can trap fluxons defining memory, while the junctions allow their movement between loops. Dynamics of fluxons through such a disordered system through a complex reconfigurable energy landscape represents brain-like spiking information flow. In this work, we experimentally demonstrate a three-loop network using YBa2Cu3O7 − δ-based superconducting loops and Josephson junctions, which exhibit stable memory configurations of trapped flux in loops that determine the rate of flow of fluxons through synaptic connections. The memory states are, in turn, affected by the applied input signals but can also be externally configured electrically through control current/feedback terminals. These results establish a previously unexplored, biologically similar architectural approach to neuromorphic computing that is scalable while dissipating energy of atto Joules/spike.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3