Experimental realization of convolution processing in photonic synthetic frequency dimensions

Author:

Fan Lingling1ORCID,Wang Kai12ORCID,Wang Heming1ORCID,Dutt Avik3ORCID,Fan Shanhui1ORCID

Affiliation:

1. Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

2. Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada.

3. Department of Mechanical Engineering and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.

Abstract

Convolution is an essential operation in signal and image processing and consumes most of the computing power in convolutional neural networks. Photonic convolution has the promise of addressing computational bottlenecks and outperforming electronic implementations. Performing photonic convolution in the synthetic frequency dimension, which harnesses the dynamics of light in the spectral degrees of freedom for photons, can lead to highly compact devices. Here, we experimentally realize convolution operations in the synthetic frequency dimension. Using a modulated ring resonator, we synthesize arbitrary convolution kernels using a predetermined modulation waveform with high accuracy. We demonstrate the convolution computation between input frequency combs and synthesized kernels. We also introduce the idea of an additive offset to broaden the kinds of kernels that can be implemented experimentally when the modulation strength is limited. Our work demonstrate the use of synthetic frequency dimension to efficiently encode data and implement computation tasks, leading to a compact and scalable photonic computation architecture.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference43 articles.

1. Deep learning

2. A. Krizhevsky I. Sutskever G. E. Hinton Advances in Neural Information Processing Systems F. Pereira C. J. C. Burges L. Bottou K. Q. Weinberger Eds. (Curran Associates Inc. 2012) vol. 25.

3. D. Ciregan U. Meier J. Schmidhuber Multi-column deep neural networks for image classification in 2012 IEEE Conference on Computer Vision and Pattern Recognition (IEEE 2012) pp. 3642–3649.

4. C. Choy J. Gwak S. Savarese 4D spatio-temporal ConvNets: Minkowski convolutional neural networks in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019) pp. 3075–3084.

5. Y.-H. Chen J. Emer V. Sze in Proceedings of the 43rd International Symposium on Computer Architecture ISCA ‘16 (IEEE Press 2016) pp. 367–379.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3