Toward a near real-time magma ascent monitoring by combined fluid inclusion barometry and ongoing seismicity

Author:

Zanon Vittorio1ORCID,D’Auria Luca23ORCID,Schiavi Federica4ORCID,Cyrzan Klaudia1ORCID,Pankhurst Matthew J.23ORCID

Affiliation:

1. Instituto de Investigação em Vulcanologia e Avaliação de Riscos (IVAR), Universidade dos Açores, Rua Mãe de Deus, 9500-123 Ponta Delgada, Portugal.

2. Instituto Tecnológico y de Energías Renovables (ITER), 38600 Granadilla de Abona, Tenerife, Canary Islands, Spain.

3. Instituto Volcanológico de Canarias (INVOLCAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain.

4. Laboratoire Magmas et Volcans, CNRS, IRD, OPGC, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.

Abstract

Fluid inclusion microthermometry on olivines, clinopyroxenes, and amphiboles was used during a volcanic eruption, in combination with real-time seismic data and rapid petrographic observations, for petrological monitoring purposes. By applying this approach to the study of 18 volcanic samples collected during the eruption of Tajogaite volcano on La Palma Island (Canary Islands) in 2021, changes in the magma system were identified over time and space. Magma batches with distinct petrographic and geochemical characteristics emerged from source zones whose depth progressively increased from 27 to 31 kilometers. The rise of magma of deeper origin is attested by fluid inclusions made of N 2 and CO, markers of mantle outgassing. Magma accumulation occurred over different durations at depths of 22 to 27 and 4 to 16 kilometers. Time-integrated magma ascent velocities (including ponding times) were estimated at between 0.01 and 0.1 meters per second. This method is cost-effective and quickly identifies changes in the magma system during an eruption, enhancing petrological monitoring procedures.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3