The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day

Author:

Tan Wenrong1ORCID,Chen Junhua1ORCID,Yue Xiaolan1ORCID,Chai Shuli1ORCID,Liu Wei1ORCID,Li Chenglin1ORCID,Yang Feng2ORCID,Gao Yongfeng1ORCID,Gutiérrez Rodríguez Lucas1ORCID,Resco de Dios Víctor13ORCID,Zhang Dawei2ORCID,Yao Yinan1ORCID

Affiliation:

1. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.

2. Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China.

3. Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain.

Abstract

During summer, plants often experience increased light inputs and high temperatures, two major environmental factors with contrasting effects on thermomorphological traits. The integration of light and temperature signaling to control thermomorphogenesis in plants is critical for their acclimation in such conditions, but the underlying mechanisms remain largely unclear. We found that heat shock transcription factor 1d (HSFA1d) and its homologs are necessary for plant thermomorphogenesis during the day. In response to warm daytime temperature, HSFA1s markedly accumulate and move into the nucleus where they interact with phytochrome-interacting factor 4 (PIF4) and stabilize PIF4 by interfering with phytochrome B–PIF4 interaction. Moreover, we found that the HSFA1d nuclear localization under warm daytime temperature is mediated by constitutive photomorphogenic 1–repressed GSK3-like kinase BIN2. These results support a regulatory mechanism for thermomorphogenesis in the daytime mediated by the HSFA1s-PIF4 module and uncover HSFA1s as critical regulators integrating light and temperature signaling for a better acclimation of plants to the summer high temperature.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3