Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb) 2 Te 3

Author:

Cheng Rui1ORCID,Ge Haoran1,Huang Shengpu2,Xie Sen1,Tong Qiwei1,Sang Hao1,Yan Fan1,Zhu Liangyu1,Wang Rui2,Liu Yong3ORCID,Hong Min4ORCID,Uher Ctirad5ORCID,Zhang Qingjie1,Liu Wei1ORCID,Tang Xinfeng1ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

2. Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China.

3. School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

4. Centre for Future Materials, and School of Engineering, University of Southern Queensland, Springfield Central, Brisbane, Queensland 4300, Australia.

5. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

P-type Bi 2− x Sb x Te 3 compounds are crucial for thermoelectric applications at room temperature, with Bi 0.5 Sb 1.5 Te 3 demonstrating superior performance, attributed to its maximum density-of-states effective mass ( m *). However, the underlying electronic origin remains obscure, impeding further performance optimization. Herein, we synthesized high-quality Bi 2− x Sb x Te 3 (00 l ) films and performed comprehensive angle-resolved photoemission spectroscopy (ARPES) measurements and band structure calculations to shed light on the electronic structures. ARPES results directly evidenced that the band convergence along the Γ ¯ - M ¯ direction contributes to the maximum m * of Bi 0.5 Sb 1.5 Te 3 . Moreover, strategic manipulation of intrinsic defects optimized the hole density of Bi 0.5 Sb 1.5 Te 3 , allowing the extra valence band along Γ ¯ - K ¯ to contribute to the electrical transport. The synergy of the above two aspects documented the electronic origins of the Bi 0.5 Sb 1.5 Te 3 ’s superior performance that resulted in an extraordinary power factor of ~5.5 milliwatts per meter per square kelvin. The study offers valuable guidance for further performance optimization of p-type Bi 2− x Sb x Te 3 .

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3