Synthetic dimension band structures on a Si CMOS photonic platform

Author:

Balčytis Armandas1ORCID,Ozawa Tomoki2ORCID,Ota Yasutomo34ORCID,Iwamoto Satoshi456ORCID,Maeda Jun1,Baba Toshihiko1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

2. Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

3. Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

4. Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

5. Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

6. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

Abstract

Synthetic dimensions, which simulate spatial coordinates using nonspatial degrees of freedom, are drawing interest in topological science and other fields for modeling higher-dimensional phenomena on simple structures. We present the first realization of a synthetic frequency dimension on a silicon ring resonator integrated photonic device fabricated using a CMOS process. We confirm that its coupled modes correspond to a one-dimensional tight-binding model through acquisition of up to 280-GHz bandwidth optical frequency comb-like spectra and by measuring synthetic band structures. Furthermore, we realized two types of gauge potentials along the frequency dimension and probed their effects through the associated band structures. An electric field analog was produced via modulation detuning, whereas effective magnetic fields were induced using synchronized nearest- and second nearest–neighbor couplings. Creation of coupled mode lattices and two effective forces on a monolithic Si CMOS device represents a key step toward wider adoption of topological principles.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3