Visualization of nonsingular defect enabling rapid control of structural color

Author:

Kang Han Sol1ORCID,Park Chanho1ORCID,Eoh Hongkyu12,Lee Chang Eun1,Ryu Du Yeol3ORCID,Kang Youngjong4ORCID,Feng Xuenyan2ORCID,Huh June56ORCID,Thomas Edwin L.2ORCID,Park Cheolmin17ORCID

Affiliation:

1. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

2. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA.

3. Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.

4. Department of Chemistry, Research Institute for Natural Sciences Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.

5. Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.

6. Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea.

7. Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

Abstract

Stimuli-interactive structural color (SC) of a block copolymer (BCP) photonic crystal (PC) uses reversible alteration of the PC using external fluids and applied forces. The origin of the diffusional pathways of a stimulating fluid into a BCP PC has not been examined. Here, we directly visualize the vertically oriented screw dislocations in a one-dimensional lamellar BCP PC that facilitate the rapid response of visible SC. To reveal the diffusional pathway of the solvent via the dislocations, BCP lamellae are swollen with an interpenetrated hydrogel network, allowing fixation of the swollen state and subsequent microscopic examination. The visualized defects are low-energy helicoidal screw dislocations having unique, nonsingular cores. Location and areal density of these dislocations are determined by periodic concentric topographic nanopatterns of the upper surface-reconstructed layer. The nonsingular nature of the interlayer connectivity in the core region demonstrates the beneficial nature of these defects on sensing dynamics.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3