Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging

Author:

Nunes Vicente Filipe1ORCID,Lelek Mickael2ORCID,Tinevez Jean-Yves3ORCID,Tran Quang D.45ORCID,Pehau-Arnaudet Gerard67ORCID,Zimmer Christophe2ORCID,Etienne-Manneville Sandrine4ORCID,Giannone Gregory1,Leduc Cécile45ORCID

Affiliation:

1. Institut Interdisciplinaire des Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux F-33000, France.

2. Imaging and Modeling Unit, Institut Pasteur, CNRS UMR 3691, Paris F-75015, France.

3. Image Analysis Hub, 2RT / DTPS, Institut Pasteur, Paris F-75015 , France.

4. Cell Polarity, Migration and Cancer Unit, Institut Pasteur, CNRS UMR 3691, équipe labellisée Ligue contre le cancer, Paris F-75015, France.

5. CNRS UMR 7592, Institut Jacques Monod, Université de Paris, Paris F-75013, France.

6. CNRS UMR 3528, Institut Pasteur, Paris F-75015, France.

7. Ultrastructural BioImaging Platform, Institut Pasteur, Paris F-75015, France.

Abstract

Intermediate filaments (IFs) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49-nanometer axial repeat both in cells and in vitro. As unit-length filaments (ULFs) were measured at ~59 nanometers, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical, and structural properties in cells.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3