Lattice-guided assembly of optoelectronically active π-conjugated peptides on 1D van der Waals single crystals

Author:

Yao Ze-Fan12ORCID,Cordova Dmitri Leo Mesoza2ORCID,Milligan Griffin M.2ORCID,Lopez Diana2,Allison Steven Jay2ORCID,Kuang Yuyao1ORCID,Ardoña Herdeline Ann M.1234ORCID,Arguilla Maxx Q.12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.

2. Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA.

3. Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.

4. Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA.

Abstract

The deployment of organic molecules in high-performance devices strongly relies on the formation of well-ordered domains, which is often complicated by the dynamic and sensitive nature of supramolecular interactions. Here, we engineered the assembly of water-processable, optoelectronic π-conjugated peptides into well-defined organic-inorganic heterointerfaced assemblies by leveraging the long-range anisotropic ordering of 1D van der Waals (vdW) crystals composed of subnanometer-thick transition metal sulfide chains (MS 3 ; M = Nb, Ta) as assembly templates. We found that the monomers can readily form 1D supramolecular assemblies onto the underlying crystal surface, owing to the structural correspondence between the π-π interactions of the quaterthiophene (4T)–based peptide units (DDD-4T) and sulfur atom ordering along the NbS 3 (100) surface. The heterointerfaced assemblies exhibited substantially red-shifted photoluminescence and enhanced visible-range photocurrent generation compared to solution-assembled films. Our results underscore the role of lattice matching in forming ordered supramolecular assemblies, offering an emergent approach to assembling organic building blocks endowed with improved physical properties.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3