Cardiolipin coordinates inflammatory metabolic reprogramming through regulation of Complex II disassembly and degradation

Author:

Reynolds Mack B.1ORCID,Hong Hanna S.2ORCID,Michmerhuizen Britton C1,Lawrence Anna-Lisa E.1ORCID,Zhang Li2ORCID,Knight Jason S.3ORCID,Lyssiotis Costas A.2ORCID,Abuaita Basel H.1ORCID,O’Riordan Mary X.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

2. Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

3. Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

Macrophage metabolic plasticity enables repurposing of electron transport from energy generation to inflammation and host defense. Altered respiratory complex II function has been implicated in cancer, diabetes, and inflammation, but regulatory mechanisms are incompletely understood. Here, we show that macrophage inflammatory activation triggers Complex II disassembly and succinate dehydrogenase subunit B loss through sequestration and selective mitophagy. Mitochondrial fission supported lipopolysaccharide-stimulated succinate dehydrogenase subunit B degradation but not sequestration. We hypothesized that this Complex II regulatory mechanism might be coordinated by the mitochondrial phospholipid cardiolipin. Cardiolipin synthase knockdown prevented lipopolysaccharide-induced metabolic remodeling and Complex II disassembly, sequestration, and degradation. Cardiolipin-depleted macrophages were defective in lipopolysaccharide-induced pro-inflammatory cytokine production, a phenotype partially rescued by Complex II inhibition. Thus, cardiolipin acts as a critical organizer of inflammatory metabolic remodeling.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3