Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization

Author:

Sneyd Alexander J.1ORCID,Fukui Tomoya23ORCID,Paleček David1,Prodhan Suryoday4,Wagner Isabella5ORCID,Zhang Yifan23ORCID,Sung Jooyoung1ORCID,Collins Sean M.6ORCID,Slater Thomas J. A.7ORCID,Andaji-Garmaroudi Zahra1,MacFarlane Liam R.23ORCID,Garcia-Hernandez J. Diego23ORCID,Wang Linjun8ORCID,Whittell George R.3ORCID,Hodgkiss Justin M.5ORCID,Chen Kai5910,Beljonne David4ORCID,Manners Ian23ORCID,Friend Richard H.1ORCID,Rao Akshay1ORCID

Affiliation:

1. Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

2. Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada.

3. School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.

4. Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium.

5. MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6010, New Zealand.

6. School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

7. Electron Physical Science Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, UK.

8. Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

9. Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand.

10. The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand.

Abstract

Precisely tuning an organic semiconductor’s crystalline order allows exciton transport to proceed 2-3 orders of magnitude faster.

Funder

Natural Sciences and Engineering Research Council of Canada

Engineering and Physical Sciences Research Council

European Research Council

National Natural Science Foundation of China

Fonds De La Recherche Scientifique - FNRS

Fédération Wallonie-Bruxelles

Marsden Fund

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3