Genomic imprinting-like monoallelic paternal expression determines sex of channel catfish

Author:

Wang Wenwen1ORCID,Yang Yujia1,Tan Suxu1ORCID,Zhou Tao12ORCID,Liu Yang1ORCID,Tian Changxu1,Bao Lisui1ORCID,Xing De1ORCID,Su Baofeng1ORCID,Wang Jinhai1ORCID,Zhang Yu1,Liu Shikai1ORCID,Shi Huitong1ORCID,Gao Dongya3,Dunham Rex1ORCID,Liu Zhanjiang3ORCID

Affiliation:

1. The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.

2. Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

3. Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA.

Abstract

The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3