Engineering quantum states from a spatially structured quantum eraser

Author:

Schiano Carlo1ORCID,Sephton Bereneice1ORCID,Aiello Roberto1ORCID,Graffitti Francesco2ORCID,Lal Nijil1ORCID,Chiuri Andrea3ORCID,Santoro Simone3ORCID,Amato Luigi Santamaria4ORCID,Marrucci Lorenzo15ORCID,de Lisio Corrado1ORCID,D’Ambrosio Vincenzo1ORCID

Affiliation:

1. Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.

2. Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

3. Enea–Centro Ricerche Frascati, via E. Fermi 45, 00044 Frascati, Italy.

4. Italian Space Agency (ASI), Centro di Geodesia Spaziale ‘Giuseppe Colombo’, Località Terlecchia, 75100 Matera, Italy.

5. CNR-ISASI, Institute of Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.

Abstract

Quantum interference is a central resource in many quantum-enhanced tasks, from computation to communication. While usually occurring between identical photons, it can also be enabled by performing projective measurements that render the photons indistinguishable, a process known as quantum erasing. Structured light forms another hallmark of photonics, achieved by manipulating the degrees of freedom of light, and enables a multitude of applications in both classical and quantum regimes. By combining these ideas, we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states with spatially structured coalescence along the transverse profile, a type of quantum mode with no classical counterpart. To achieve this, we locally tune the distinguishability of a photon pair by spatially structuring the polarization and creating a structured quantum eraser. We believe that these spatially engineered multiphoton quantum states may be of significance in fields such as quantum metrology, microscopy, and communication.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3