Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism

Author:

Vu Huong T.1ORCID,Zhang Zhechun2ORCID,Tehver Riina3ORCID,Thirumalai D.4ORCID

Affiliation:

1. Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK.

2. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

3. Department of Physics, Denison University, Granville, OH 43023, USA.

4. Department of Chemistry, University of Texas, Austin, TX 78702, USA.

Abstract

Although it is known that majority of kinesin motors walk predominantly toward the plus end of microtubules (MTs) in a hand-over-hand manner, the structural origin of the stepping directionality is not understood. To resolve this issue, we modeled the structures of kinesin-1 (Kin1), MT, and the Kin1-MT complex using the elastic network model and calculated the residue-dependent responses to a local perturbation in the constructs. Kin1 binding elicits an asymmetric response that is pronounced in α/β-tubulin dimers in the plus end of the MT. Kin1 opens the clefts of multiple plus end α/β-tubulin dimers, creating binding-competent conformations, which is required for processivity. Reciprocally, MT induces correlations between switches I and II in the motor and enhances fluctuations in adenosine 5′-diphosphate and the residues in the binding pocket. Our findings explain both the directionality of stepping and MT effects on a key step in the catalytic cycle of kinesin.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3