Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation

Author:

Zhao Yu Dong1ORCID,Jiang Wangkai2ORCID,Zhuo Sheng3ORCID,Wu Bin14ORCID,Luo Peng1ORCID,Chen Weifan3ORCID,Zheng Min2ORCID,Hu Jianchen2ORCID,Zhang Ke-Qin2ORCID,Wang Zuo-Shan1ORCID,Liao Liang-Sheng4ORCID,Zhuo Ming-Peng24ORCID

Affiliation:

1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

2. College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

3. School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.

4. Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Abstract

Harvesting sunlight into cost-effective electricity presents an enticing prospect for self-powered wearable applications. The photothermal materials with an extensive absorption are fundamental to achieve optical and thermal concentration of the sunlight for efficiency output electricity of wearable solar thermoelectric generators (STEGs). Here, we synthesize an organic charge-transfer (CT) cocrystal with a flat absorption from ultraviolet to second near-infrared region (200 to 1950 nanometers) and a high photothermal conversion efficiency (PCE) of 80.5%, which is introduced into polyurethane toward large-area nanofiber membrane by electrospinning technology. These corresponding membranes demonstrate a high PCE of 73.7% under the strain more than 80%. Sandwiched with carbon nanotube–based thermoelectric fibers, the membranes as stretchable solar absorbers of STEGs could supply a notably increase temperature gradient, processing a maximum output voltage density of 23.4 volts per square meter at 1:00 p.m. under sunlight. This strategy presents an important insight in heat management for wearable STEGs with a desired electricity output.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3