Affiliation:
1. Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands.
Abstract
Enhanced recycling of phosphorus as ocean deoxygenation expanded under past greenhouse climates contributed to widespread organic carbon burial and drawdown of atmospheric CO
2
. Redox-dependent phosphorus recycling was more efficient in such ancient anoxic marine environments, compared to modern anoxic settings, for reasons that remain unclear. Here, we show that low rates of apatite authigenesis in organic-rich sediments can explain the amplified phosphorus recycling in ancient settings as reflected in highly elevated ratios of organic carbon to total phosphorus. We argue that the low rates may be partly the result of the reduced saturation state of sediment porewaters with respect to apatite linked to ocean warming and acidification and/or a decreased availability of calcium carbonate, which acts as a template for apatite formation. Future changes in temperature and ocean biogeochemistry, induced by elevated atmospheric CO
2
, may similarly increase phosphorus availability and accelerate ocean deoxygenation and organic carbon burial.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献