Electric field–assisted anion-π catalysis on carbon nanotubes in electrochemical microfluidic devices

Author:

Gutiérrez López M. Ángeles1ORCID,Ali Rojan2ORCID,Tan Mei-Ling1ORCID,Sakai Naomi1ORCID,Wirth Thomas2ORCID,Matile Stefan1ORCID

Affiliation:

1. Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland.

2. School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK.

Abstract

The vision to control the charges migrating during reactions with external electric fields is attractive because of the promise of general catalysis, emergent properties, and programmable devices. Here, we explore this idea with anion-π catalysis, that is the stabilization of anionic transition states on aromatic surfaces. Catalyst activation by polarization of the aromatic system is most effective. This polarization is induced by electric fields. The use of electrochemical microfluidic reactors to polarize multiwalled carbon nanotubes as anion-π catalysts emerges as essential. These reactors provide access to high fields at low enough voltage to prevent electron transfer, afford meaningful effective catalyst/substrate ratios, and avoid interference from additional electrolytes. Under these conditions, the rate of pyrene-interfaced epoxide-opening ether cyclizations is linearly voltage-dependent at positive voltages and negligible at negative voltages. While electromicrofluidics have been conceived for redox chemistry, our results indicate that their use for supramolecular organocatalysis has the potential to noncovalently electrify organic synthesis in the broadest sense.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. My Vision of Electric-Field-Aided Chemistry in 2050;ACS Physical Chemistry Au;2024-02-01

2. Anion–π catalysis on carbon allotropes;Beilstein Journal of Organic Chemistry;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3