Arrested-motility states in populations of shape-anisotropic active Janus particles

Author:

Katuri Jaideep1ORCID,Poehnl Ruben2,Sokolov Andrey1,Uspal William2ORCID,Snezhko Alexey1ORCID

Affiliation:

1. Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.

2. Department of Mechanical Engineering, University of Hawai’i at Mānoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822, USA.

Abstract

The emergence of large-scale collective phenomena from simple interactions between individual units is a hallmark of active matter systems. Active colloids with alignment-dominated interparticle interactions tend to develop orientational order and form motile coherent states, such as flocks and swarms. Alternatively, a combination of self-propulsion and excluded-volume interactions results in self-trapping and active phase separation into dense clusters. Here, we reveal unconventional arrested-motility states in ensembles of active discoidal particles powered by induced-charge electrophoresis. Combining experiments and computational modeling, we demonstrate that the shape asymmetry of the particles promotes the hydrodynamically assisted formation of active particles’ bound states in a certain range of excitation parameters, ultimately leading to a spontaneous collective state with arrested motility. Unlike the jammed clusters obtained through self-trapping, the arrested-motility phase remains sparse, dynamic, and reconfigurable. The demonstrated mechanism of phase separation seeded by bound state formation in ensembles of oblate active particles is generic and should be applicable to other active colloidal systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3