The synovial environment steers cartilage deterioration and regeneration

Author:

Bolander Johanna12ORCID,Moviglia Brandolina Maria Teresita3,Poehling Gary14,Jochl Olivia1ORCID,Parsons Emma1,Vaughan William1,Moviglia Gustavo13ORCID,Atala Anthony1ORCID

Affiliation:

1. Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.

2. Skeletal Biology and Research Engineering Center, KU Leuven, Leuven, Belgium.

3. Civil Association of Research and Development of Advanced Therapies (ACIDTA), CABA, Argentina.

4. Department of Orthopaedic Surgery, Wake Forest Baptist Health, Winston Salem, NC, USA.

Abstract

Osteoarthritis (OA) was recently defined as an epidemic, and the lack of effective treatment is highly correlated to the limited knowledge regarding the underlying pathophysiology. Failure to regenerate upon trauma is thought to be one of the underlying causes for degenerative diseases, including OA. To investigate why lesions within an OA environment fail to heal, a heterogeneous cell population was isolated from the synovial fluid (SF) of OA patients. The cells’ ability to undergo processes required for functional tissue regeneration was evaluated in the presence or absence of autologous SF. The obtained mechanistic findings were then used for the development of an immunomodulatory cell treatment, aimed to restore the pro-regenerative environment. Intra-articular injection in a clinical compassionate use study showed that the treatment restored the articular cartilage and joint homeostasis of OA patients. These findings confirm the role of pro-regenerative immune cells and their targeted influence on progenitor cells for degenerative joint disease therapies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3