Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography

Author:

Saiki Takao1ORCID,Shimada Keitaro2,Ishijima Ayumu34ORCID,Song Hang2,Qi Xinyi2ORCID,Okamoto Yuki5ORCID,Mizushima Ayako6,Mita Yoshio7ORCID,Hosobata Takuya8ORCID,Takeda Masahiro8ORCID,Morita Shinya9ORCID,Kushibiki Kosuke10ORCID,Ozaki Shinobu11ORCID,Motohara Kentaro1011,Yamagata Yutaka8ORCID,Tsukamoto Akira12,Kannari Fumihiko13ORCID,Sakuma Ichiro124ORCID,Inada Yuki314ORCID,Nakagawa Keiichi123ORCID

Affiliation:

1. Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

2. Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan.

3. PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.

4. Medical Device Development and Regulation Research Center, The University of Tokyo, Tokyo 113-8656, Japan.

5. Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki 305-8564, Japan.

6. Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.

7. Department of Electrical and Electronic Engineering, The University of Tokyo, Tokyo 113-0033, Japan.

8. RIKEN Centre for Advanced Photonics (RAP), RIKEN, Saitama 351-0198, Japan.

9. School of Engineering, Tokyo Denki University, Tokyo 120-8551, Japan.

10. Institute of Astronomy, The University of Tokyo, Tokyo 181-0015, Japan.

11. National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588, Japan.

12. Department of Applied Physics, National Defense Academy of Japan, Kanagawa 239-8686, Japan.

13. Department of Electronics and Electrical Engineering, Keio University, Kanagawa 223-8522, Japan.

14. Electronics and Information Sciences, Saitama University, Saitama 338-8570, Japan.

Abstract

Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3