Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

Author:

Williams Robert J.1ORCID,Brintz Ben J.12ORCID,Ribeiro Dos Santos Gabriel3ORCID,Huang Angkana T.34ORCID,Buddhari Darunee4,Kaewhiran Surachai5,Iamsirithaworn Sopon5ORCID,Rothman Alan L.6ORCID,Thomas Stephen7ORCID,Farmer Aaron4ORCID,Fernandez Stefan4ORCID,Cummings Derek A. T.89ORCID,Anderson Kathryn B.47ORCID,Salje Henrik3ORCID,Leung Daniel T.110ORCID

Affiliation:

1. Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.

2. Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.

3. Department of Genetics, University of Cambridge, Cambridge, UK.

4. Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

5. Ministry of Public Health, Nonthaburi, Thailand.

6. Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA.

7. Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA.

8. Department of Biology, University of Florida, Gainesville, FL, USA.

9. Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.

10. Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.

Abstract

The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric significantly improved model performance.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3